c GRAHAM PRIEST

THE LOGIC OF PARADOX

‘Indeed, even at this stage, I predict a time when
there will be mathematical investigations of calculi
containing contradictions, and people will actually
be proud of having emancipated themselves.from

consistency.’
WITTGENSTEIN 1930,
Philosophical Remarks, p. 332.

0. INTRODUCTION

The purpose of the present paper is to suggest a new way of handling the
logical paradoxes. Instead of trying to dissolve them, or explain what has
gone wrong, we should accept them and learn to come to live with them.
This is argued in Sections I and II. For obvious reasons this will require the
abandonment, or at least modification, of ‘classical’ logic. A way to do this
is suggested in Section III. Sections IV and V discuss some implications of
this approach to paradoxes.

I. PARADOXES

I.1. The logical paradoxes (which are normally subdivided into the set
theoretic ones such as Russell’s and the semantic ones such as the liar) have
been around for a long time now. Yet no solution has been found.
Admittedly, the liar paradox, which has been known for over 2000 years,
has often been ignored as a triviality unworthy of serious consideration.
(Though medieval logicians such as Buridan by no means regarded it as
such.) However, in the last three quartérs of a century, there has probably
been more intensive work done in trying to find a solution for the logical
paradoxes than on any other topic in the history of logic. The roll call of
those who have tried to find a solution reads like a logician’s honours list.
Yet no widely accepted solution has been found.

I.2. Of course, we know how to avoid the paradoxes formally. We can
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avoid the semantic paradoxes, e.g., by a hierarchy of Tarski meta-languages,
and the set theorectic ones, e.g., by the class/set distinction of

von Neumann. But these are not solutions. A paradox is an argument with
premises which appear to be true and steps which appeér to be valid, which
nevertheless ends in a conclusion which is false. A solution would tell us
which premise is false or which step invalid; but moreover it would give us
an independent reason for believing the premise or the step to be wrong. If
we have no reason for rejecting the premise or the step other than that it
blocks the conclusions, then the ‘solution’ is ad soc and unilluminating.
Virtually all known ‘solutions’ to the paradoxes fail this test and this is why
I say that no solution has yet been found.

I.3. This massive failure on the part of the logical community suggests that
trying to solve the paradoxes may be the wrong thing to do. Suppose we
stop banging our heads against a brick wall trying to find a solution, and
accept the paradoxes as brute facts. That is, some sentences are true (and
true only), some false (and false only), and some both true and false!
(“This sentence is false’ and ‘The Russell set is a member of itself’ are
paradigm examples of such paradoxical sentences). Of course, this requires
giving up Aristotle’s dictum ‘The firmest of all principles is that it is
impossible for the same thing to belong and not to belong to the same thing
at the same time in the same respect’ (Metaphysics T", 3(1005P 19—-23).
Still, all progress depends on parting with tradition in some way or other.

IT. SEMANTIC CLOSURE

I1.1. If my argument for accepting the paradoxes were merely that no one
had yet solved them, then my position, though plausible, would not be very
tempting. However, I believe that there are theoretical reasons why para-
doxes must be accepted; must, that is, if we are to get to grips with the
notion of mathematical provability (in the naive sense).

IL.2. Proof, as understood by mathematicians (not logicians) is that process
by which we establish certain mathematical claims to be true. In other
words, suppose we have a claim (for the sake of definiteness say, a claim of
arithmetic) whose truth we wish to settle. We look for a proof or a
refutation (i.e., a proof of its negation). But a proof from what? Presumably
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from other claims we already know to be true. We can, of course, ask how
we knew these claims to be true, and it may be because we have proofs of
them. However, on pain of infinite regress, we cannot go on doing this
indefinitely. Sooner or later we must come to claims we know to be true
without a proof, where the question of proof does not, as it were, arise.
These are axioms in the old-fashioned sense: self evident truths. (Why they
are self evident, I need not go into. It suffices that there must be some such
things.) In our present case these are presumably facts about numbers, such
as that every integer has a successor different from anything gone before or
the basic facts about addition. These are the sorts of things that children
become familiar with when they learn to count and to do arithmetic. (We
can, of course, look for ‘proofs’ of these axioms in some foundational
system such as Principia Mathematica. However, these ‘proofs’ are not
proofs in the sense we are concerned with — means of coming to know that
the things proved are true.)

Thus we see that we establish claims of mathematics, if they are not
axioms, by proving them (in the naive sense) from those axioms. This all
seems obvious to the point of banality. However, it runs us straight into a
major problem. For there seems to be no doubt that this procedure could
be formalized. The axioms could, in principle, be written in a formal
language and the proofs set out as formal proofs. The formal system that
resulted would encode our naive proof methods. Moreover, there seems no
reason to doubt that all recursive functions would be representable in the
system. For certainly all recursive functions are naively definable. However,
according to Godel’s incompleteness theorem in any such formal system
there will be sentences that are neither provable nor refutable — at least if
this set of axioms is decidable. If this were all there is to Godel’s theorem,
the result might be surprising but not particularly worrying. The incomplete-
ness of the formal system would merely show that there were mathematical
problems beyond the powers of our proof procedures to settle. But this is
not all there is. For some of these unprovable sentences can be shown to be
true, i.e., proved in the naive sense. But the formal system was constructed
in such a way that it encoded our informal proof methods. So there can be
no such proof. Godel’s theorem presents an epistemological problem that
has never been squarely faced. How is it to be resolved?

One way out of the problem is to accept that the set of axioms is not
recursive. Thus, assuming Church’s thesis there would be no effective way
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of deciding whether something was self evident! This is obviously not on.
Another possibility is that our naive proof procedures are not formalizable.
This seems implausible, though a case can be made out. Godel (1947) has
suggested that we may from time to time increase our stock of axioms by
adding one which has inductive support (in the sense that it implies many
things known to be true and nothing known to be false). On this picture

we may suppose that our naive proof methods at a certain time, say ¢, can-
be formalized by a system S. However, it may happen at a later time that to
encode our naive proof procedures we require another system S’ formed
from S by adding to its axioms a sentence 4 from which we can prove (in .S)
a number of true things and nothing false. However plausible this account is,
it does not solve the problem. For consider one of the sentences that is
independent of S but informally provable. Then this is already provable at .
We do not have to collect inductive evidence for it to see whether it should
be added to the axioms of S. It can be established deductively by means
already to hand. Hence the problem now appears with respect to our naive
proof methods at time ¢.

I1.3. We have then, found no way out of the problem. Yet Godel’s sugges-
tion does raise the question of how exactly it is that we are able to prove
these independent sentences. This we will now investigate. We will see that
it provides an answer to the problem.

Suppose that P is the formal system which encodes our naive proof
ability, (possibly at a certain time) and let g be the (code number of the )
Godel-sentence

“13x Prov(xg)

where Prov (xy) is the primitive recursive predicate ‘x is the code of a proof
(in P) of sentence y’. Now, g is not provable in P, and this can be proved
purely syntactically. However, the question is not how g is shown to be
independent but how g is shown to be true. For g can be shown to be true.
Usually it is said (with a wave of hands) that g ‘expresses its own unprov-
ability’ and hence is true. When this rather vague hint is spelt out precisely,
we obtain the following argument.

€)) 3x Prov (xg) = '3 x Prov(xg)' is true

2 : = g is provable
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(3) = g is true
) ="13x Prov (xg)
Hence 713x Prov(xg).

Step (2) depends upon the fact that ‘Prov’ really does represent the proof
relation. Step (3) depends on the fact that whatever is provable in P is true.
Steps (1) and (4) follow from the Tarski bi-conditional 77y ' <—  (where
Ty Vs the code of ).

Now the important point to note about this reasoning is that it involves
an essential defour through P’s meta-language. The use of the notion of
truth, its properties and its relation to provability are essential to the proof.
We can not prove g in P, but we can prove it in P’s meta-language.

IL4. Thus, we see that our naive notion of proof appears to outstrip the
axiomatic notion of proof precisely because it can deal with semantic
notions. Of course, we can formalize the semantics axiomatically but then
naively we can reason about the semantics of that system. As long as a
theory can not formulate its own semantics it will be Godel incomplete, i.e.,
there will be sentences independent of the theory which we can establish

to be true by naive semantic reasoning.

IL.5. What happens, however, if we take a theory which is semantiéally
closed? (A theory is semantically closed if it can formulate its own
semantics.) If it is semantically closed, there is nothing to stop us carrying
out the reasoning of Section II.3 in the system itself. For example, con-
sider the following theory PS. The language of PS is that of Peano arith-
metic with the additional two place predicate ‘Sat (x, y)’. (Intuitively, this
is going to be read ‘the (finite) sequence x satisfies the formula with code
number y’.) We can code up the notions of formula, ith variable, finite
sequence of numbers, ith member of a sequence, length of a sequence, in
the usual way. The axioms of PS are then those of Peano arithmetic plus all
instances of the Tarski satisfaction scheme:

(Vx) (x is a sufficiently long finite sequence =
Sat (x"y ) > y")

where y' is Y with every variable ‘v;" free in Y replaced by x; (the ith
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member of the sequence x) and ‘x is sufficiently long’ is (V) if the ith
variable occurs free in ¢ then the length of x is greater than i’. (Alterna-
tively, this scheme could be replaced by a finite number of axioms: one for
each atomic predicate of PS — including ‘Sat’ — and one for each truth
function and quantifier. For details of this sort of construction see Hilbert
and Bernays (1939, pp. 334—5). All instances of the satisfaction scheme
would then be provable.) Now PS is clearly semantically closed and we can
perform the sort of reasoning we used in Section II.3 to prove 13x Prov(xg
in PS itself (where ‘Prov’ is now the proof predicate of PS).

I1.6. We are now in a position to solve the problem posed in Section IL.2.
We saw that the problem arises because we can establish sentences as true
that are not provable in some particular system. We now see that this
problem is avoided by using a semantically closed formal theory. For the
reasoning that is used to show that this sort of sentence is true can be
represented within a semantically closed theory. Of course, this also shows
that Godel’s proof of the existence of independent sentences breaks down.
For the reasoning gives a proof of the ‘independent’ sentence in the theory.
(Whether there are independent sentences is a topic I will return to in
Section IV.13.) ‘

We might well ask where exactly Godel’s proof goes wrong. The place is
not difficult to locate. For, of course, his proof works only if the theory
under consideration is consistent. It is well known that semantically closed
theories are inconsistent. (See, e.g., Fraenkel Bar-Hillel and Levy (1973,

p. 312). It is in this way that Godel’s result is avoided.

We have seen then that the way to avoid the problem — in fact, the only
reasonable way — is to accept that the correct formalization of our naive
methods of proof must be a semantically closed and inconsistent theory. In
fact, any formal analysis of our naive methods of proof must use a semantic-
ally closed and inconsistent theory or be inadequate.

- At this point it might be objected that an inconsistent theory can not
possibly codify our naive proof methods. For in an inconsistent theory
everything is provable. However, this objection presupposes that the under-
lying logic of the theory is ‘classical’. This will be rejected in Section III.1.
The fact that there are pathological ‘classical’ proofs (using, e.g., the rule
(A AT14)/B)) of anything in an inconsistent theory just shows that the
logic of naive proofs is not classical.
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IL.7. However, the fact that a semantically closed theory is inconsistent is
important. For, in fact, the inconsistencies generated by semantical closure
are precisely the semantical antinomies. Since Tarski (1936) it has been
clear how semantic closure generates the semantic paradoxes. This then is
the theoretical argument I referred to in Section II.1 for having to come to
accept certain contradictions. For any acceptable analysis of our naive
notion of proof requires the use of a semantically closed and therefore
inconsistent theory. Hence any adequate analysis of the naive notion of
proof will require us to accept the semantical antinomies as facts of life.

IL.8. Although much of what I have said in this section is technical, the
spirit is easy to grasp. The formal logician is essentially an applied math-
ematician. It is his job to construct mathematical systems which model (in
the physicist’s sense, not the logician’s) some natural phenomenon. The
phenomenon the logician is particularly interested in, is normal (naive)
reasoning carried out in a natural language. (After all, mathematicians use
ordinary (not formal) languages — even if they are appendixed by certain
technical terms — and ordinary reasoning). And the mathematical systems
he uses are formal languages, mathematical semantics, etc.

Now it is a standard view due to Tarski that natural languages are both
semantically closed and contain paradoxes. As he puts it:

If we are to maintain the universality of everyday language in connection with
semantical investigations, we must, to be consistent [sic!] admit into the language in
addition to its sentences and other expressions, also the names of these sentences and
expressions, and sentences containing the names, as well as such semantic expressions
as ‘true sentence’, ‘name’, ‘denote’, etc. But it is presumably just this universality of
everyday language which is the primary source of all semantic antinomies, like the
antinomies of the liar and of heterological words.

TARSKI (1944)

This is a view which I endorse. (In fact, I have claimed elsewhere, Priest
(1974, Chapter 5, Section 1), that all the logical antinomies are due to
semantic closure. But that is another story.) Hence, although a semantically
open formal theory may be an adequate model for certain limited purposes,
a semantically closed formal theory — with paradoxes — is required in
general.
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III. THELOGIC OF PARADOX (LP)

IIL.1. In the two previous sections I have argued that we will have to learn
to handle systems with contradictions in them. If we are to do this we will
have to relinquish ‘classical’ logic. For contradictions have a horrible way of
infecting classically formalized theories. The whole population of math-
ematical sentences becomes stricken with contradiction, rendering them
unfit for work. However, if we can isolate the paradoxes and prevent them
from contaminating everything else, we will be alright. In this section I will
construct such a logic. However, I wish to emphasize that the arguments of
the previous two sections are independent of the fate of the logic con-
structed. Even if it turns out to be unsatisfactory for some reason, the fore-
going considerations still hold good. '

IIL.2. In fact, systems that are not wrecked by contradictions have already
appeared in the literature. Both Routley (1977) and da Costa (1974) have
argued that such logics would allow us to investigate inconsistent but non-
trivial theories. However, none of the systems proposed have the simple and
intuitively plausible semantics of LP. For as well as providing the motiv-
ation for constructing such a logic, the preceding sections actually suggest

a way to do it. This ensures that the logic has very intuitive semantics.

II1.3. Classical logic errs in assuming that no sentence can be both true and
false. We wish to correct this assumption. If a sentence is both true and
false, let us call it ‘paradoxical’ (p). If it is true and not false, we will call it
‘true only’ (¢¥) and similarly for ‘false only’ (f). However, having made this
assumption, we shall continue to reason normally.

IIL4. A sentence is true iff its negation is false. Hence the negation of a true
and false sentence is false and true, i.e., paradoxical. The negation of a true
only sentence is false only. (If its negation were true, it would have to be
false.) Similarly the negation of a false only sentence is true only. We could
record these results in the following table.

|

TN

t
p
f
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IIL.5. Similar reasoning gives the following table for conjunction:

A t I D l f
|t p f
p|lp|p | f
frrhr f

I will do just a couple of examples. If 4 is ¢ and B is p, then both 4 and B
are true. Hence 4 A B is true. However, since B is false, A A B is false. Thus

A A B is paradoxical.

If A is fand B is p, then both A and B are false. Hence 4 A B is false. If
A A B were true as well, then both 4 and B would be true, but A4 is false
only. Hence, 4 A B is f.

I11.6. Reasoning in a similar way we can justify the table for disjunction.

vit]e |1

t t t t
p |t P p
flt p f

Alternatively, ‘4 v B’ can be defined as “71("14 A T1B).
~ We can define ‘4 >B’as‘T1Av B and‘A <« B’ as‘A~>BAB—4’.
This gives the following tables:

Ml NLA N N A L N0 2 O |
t |t | p f t t p f
p|t]|op p p |p | P p
f |t t t f ' f 1l rp t

To what extent ‘>’ can be held to be some form of implication, we will
return in Section IV 4.

IIL7. In fact, these are the matrices of Kleene (1952, p. 332 ff). However,
his interpretation is very different to ours. The matrices for ‘v’, “A’, 71,
are also those of Lukasiewicz (1920). However, only ‘¢’ is designated in his
system. We will designate both ¢ and p since both are the values of true
sentences. Formally let L be a propositional language whose set of prop-
ositional variables is P. Let v: P {t, p, f} (i.e., v is an evaluation of the
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propositional variables). Let v* be the natural extension of v to all the
sentences of L using the above truth tables. If Z is a set of sentences of L,

we define:

> = A iff there is no v such that v*(4) = f
but forall BE X, v*(B) =t or p.

E Aiff¢=A  (ie., forally,v*(4) =t or p).

I11.8. THEOREM: A is a two valued tautology iff = 4.

Proof. The proof from right to left is immediate since every two valued
evaluation is a three valued evaluation.

Conversely, if v is a three valued evaluation, let v; be the two valued
evaluation formed by changing all p’s to £’s. By checking the truth tables,
we can see that if »*(4) = f, vi(4) = f. The result follows.

The LP matrices together with an interpretation similar to the one I have
given occur in Asenjo (1966). Also, although, he does not state it explicitly,
he seems to take both ¢ and p (his 0 and 2) to be designated values. How-
ever he does not take his semantics very seriously. For immediately after
giveing the semantics he states that 71(4 A 714) (which he calls the law of
contradiction) should not be a theorem of any system of logic suitable for
formalizing inconsistent theories. However, from this theorem we can see
that according to these semantics “1(4 A T14) is logically valid.

II1.9. We have seen that the property of being a tautology is preserved in
LP. However, the deducibility relationship is changed. One can check the

following:

AEAVB ABEAAB A->BETIB~> "4
A->B-C)EB>(A~C) AEB-A 94,7 1BETIAV B)
J4->"1BEB~A JAVB)ETA AET4

TIAEA 414N B) JUA-B) A
AANBEA A,BEA-B) A-BEAANC>BAC
AEA-B A>(A->B)=A>B A-TAE 4.

However, it is easy to find evaluations which show that the following do

not hold.
ANTIAEB A->B,B->CEA~>C
A,TAVBFB A, A->BFEB A-B,"1BETI4
A->BATIBETI4
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II1.10. THEOREM: If 4 and B have no propositional variables in common
and if B can take the value fthen 4 ¥ B.

Proof. Let v be an evaluation such that v*(B) = f.

Let v, be like v except that for all the propositional variables g occurring
in A4,v(q) = p. It is easily checked that v (4) = p v](B) = f. Hence the
result.

III.11. THEOREM: IfA4,...4, FB,thenA4,...4,_, EA, > B.
Proof. Trivial.

II1.12. It is easy to extend LP to a quantificational logic LPQ. Let L be a
first order language. For simplicity we assume it has no constants or
function symbols.

Let A =<(DI).

D is a domain of objects. If P, is an n-place predicate of L and X an
n-tuple of members of D, I maps (P, %) into {¢, p, f}. '

Let S be an evaluation of the variables of L (i.e., a map from the
variables into D. We define the ‘truth value’ of a sentence under S as
follows: ‘

If A is of the form P,(v; . .. v;), A is ¢, p, or f, according to whether
I(P,(Sv;...Sv;Mist,porf.

If A is of the form 1B or B a C, the truth conditions of A4 are given by
the matrices of Sections III 6—7.

If A is of the form (V)B, then

Aistiffforalld €D Bist under S(v/d)

(where S(v/d)is S — (v S(@))u (v d)).

A is fiff for some d €D B is funder S(v/d)

A is p otherwise (i.e., for all d €D, B is t or p under S(v/d), and for
some d € D. B is p under S(v/d)).

This last definition can be justified by an obvious extension of the
arguments used to justify the truth tables of Sections III 4—6. I will do an
example. If B is ¢ or p for all S(v/d) then B is true for all S(v/d). Hence
(Vx)B is true. If B is p for some S(v/d), then it is false for some S(v/d).
Thus (Vx)B is false. Hence A is paradoxical. :

The ‘truth conditions’ of (3x)B can be given as follows. (Alternatively,
‘(3x)B’ can be defined as ‘" 1(Vx)71B°). |
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(3x)Bis t iff for some d€ED B is t under S(v/d)

(Ax)Bisfiff forald €D B is funder S(v/d)

(3x)B is p otherwise (i.c., for alld €D, B is f or p under
- 8(v/d) but forsome d €D B is p under S(v/d)).

As usual one can prove that if A is a closed sentence, then the truth value of
A is independent of the S one chooses.
If ¥ is a set of sentences of L, we define:

2 | A iff there is no A and no S such that 4 is funder S and
forall BEX,Bis t or p under S.

FAiff ¢ =A (e, forall Aand S, 4 is ¢ or p under S).

IIL.13. THEOREM: A is a two valued logical truth iff = 4.

Proof. The proof from right to left is immediate since every two valued
model is a three valued model.

Conversely if A, S are a three valued model and evaluation respectively, ‘
let A; be the two valued model obtained by changing all the p’s of I to £s.
One easily checks that if 4 is funder S,in A, 4 is funder Sin A, . The
result follows.

III.14. Asin II1.9 the deducibility relation is changed in LPQ. For although
we have

(VX)4, (VX)BE(YX)AAB) (Vx4 E1@x) 4
(Vx)4 | (Vx)(4 V B) (Vx)(4 > B) = (Vx)4 ~> (Vx)B
(Vx)4 E A(x/y) (V)4 = (Vx)(B~ 4)

(Vx)(A > B) = (Vx)(IB~>T14) (Vx)4 E (Vx)(T4~ B)
(Vx)(4 - B) = (3x)4 ~ (3x)B

it is easy to find counter-examples which show that the following fail to
hold. '

(Vx)A4,(Vx)(4 - B) = (Vx)B

(Vx)(4 ~>B),(Vx)T1BE(vx) 14

(Vx)(4 > B), (Vx)(B~ C) = (Vx)(4 - C).

[I1.15. THEOREM (Substitutivity of Equivalents): If 4, A have variables
amongst ¥; . . .y, and B! is like B except that it contains A* where B

contains 4, then
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(91...92)(A <> A" EB <> B

Proof. The proof is by induction over the formation of B.

If A is B then the result follows since (Vy)C = C.

If a truth function is used in the construction, then the following rules
are used to establish the result

A<«—>BF 1A« "1B
A<>BEFEAANC<—BAC.

If a quantifier is used in the construction, then the result follows from
the two rules.

If A = B and x does not occur free in 4 then

A E (Vx)B.

and _
(Vx)(4 <= B) = (Vx)A < (Vx)B.

IIL.16. It is not difficult to give an axiom or rule system for LP and LPQ.
However I will leave these technical problems to another paper. Also, LP
bears an interesting relation to the semantics for first degree entailment
presented by Dunn (1976) and the Routleys (1972). Again, I will consider
this matter in another paper.

IV. CONSEQUENCES

IV.1. The most obvious thing about the logic of paradox is that it forces us
to give up as invalid certain principles of deduction that one would not
normally suspect. For example the rules

A T1AvB A->"1B B VxA VY x(4 - B)
B 74 VxB

are validity preserving but not truth preserving. We can soften the blow to
the intuitions a little by pointing out that although these inferences are not
generally valid, they are valid provided all the truth values involved are
classical (i.e., true only or false only). Let us call a rule that is truth preserv-
ing only under such conditions ‘quasi-valid’. Then quasi-valid inferences are
perfectly O.K. provided we steer clear of funny sentences such as “This
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sentence is false’ and “The Russell set is a member of itself”. Obviously all
classically valid rules of inference are either valid or quasi-valid.

IV.2. However, quasi-valid rules are generally invalid. So it might reasonably
be said that they should not be used. This in turn would defeat our purpose.
For the aim of the exercise was to construct a logic which could be used

(in connection with a semantically closed theory) to capture naive math-
ematical reasoning. However, eschewing quasi-valid rules would obviously
have a crippling effect on mathematical reasoning. How can one reason
without modus ponens? There are two ways one can cope with this problem.
I will consider these in turn.

IV.3. First let us stick to the fragment of language which contains only
‘71, ‘A’ and ‘v’. The main loss here is the disjunctive syllogism. However,
giving this up is no option. For C. I. Lewis’ well known proof shows that
this leads straight to (4 A 714)/B as follows.

AATIA (1) Assumption

A ~ (2) from (1)

AvB (3) from (2)

14 (4) from (1)
B (5) from (3), (4) by disjunctive syllogism.

So this has got to go. However, if this were the sum total of our losses, we
might well feel that we could get by.

IV.4. The next domain of loss is connected with ‘=’.

As we saw, the rules of modus ponens, modus tollens and reductio ad
absurdum have to be given up. However, expressing ‘=’ in terms of ‘1" and
‘v’ we see that these are really variants on the disjunctive syllogism. This
suggests that it may be our identification of ‘4 = B’ with ‘714 v B’ that is
causing the problem.

Now there are many and well known arguments against reading material
implication as any form of implication. See Anderson and Belnap (1975).

I will not rehearse these again. I will just say that our semantics may well be
considered adequate for ‘71’, ‘v’, ‘A’ but need somehow to be extended to
deal with ‘=>’. In virtue of all the work in this area, this seems quite

pléusible.
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IV.5. However the problem of how to extend LP is not easy. In particular,
it is well known that any system Containing the ‘>’ of H,S4,R,Eor T
(see Anderson and Belnap (1975, Chapter 1)) is collapsed into triviality by
the addition of the naive comprehension scheme of set theory. (See, e.g.,
Routley (1977, Section 6.) A similar point can be made for semantically
closed theories. To be precise, in any semantically closed theory in a
language which contains a connective ‘>’ satisfying the rules

A A-B  A->(A-B)
B A—>B

(Absorption)
anything can be proved. The proof is as follows. Consider the sentence
‘If this sentence is true then 4 is’. Symbolically let (1) be
1) T(1)—~>A4
where ‘Tx’ is ‘x is true’.
Then by the Tarski truth scheme, we have:
T(1) <= (T (1)~ 4).
Using absorption from left to right we get
T(1H)—~4
and modus ponens from right to left
T(1).
Hence again by modus ponens we have
A.

Thus either modus ponens or absorption must be given up. Plausibly one
might get by without absorption, but all the systems we mentioned contain
it.

IV.6. The next area of loss is at the quantifier level. As we have defined ‘->’,

(Vx)(4—-B) (¥x)4
(Vx)B
is invalid. Thus, if we identify ‘All A’s are B’s’ with ‘(Vx)(4 - B)’, we have
to give up the following.
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All A’s are B’s  Everything is 4
Everything is B |

If we found another way to obtain ‘>’ then this, of course, might change.
However, it is interesting to observe that however we define ‘All A’s are
B’s’ (let us write this neutrally as [4, B] ) one of the following must be
given up

[4,B], (V)4 (V94 [4,B],
R P Y (Vx)B

For if we hold all these we can obtain (4 A 714)/B as follows. Let x be
some variable not in 4 or B.

Al

1) AATIA Assumption

2) (Vx)(x=x) . Self evident truth (!).
3) A : 1)
4) AN (Vx)(x=x) 2) & 3)
5) (VX)A A x=x) 4)
6) [MBvx#x,AN x=x], 5)& A2
7) 14 1)
8) (VX)T1ANx=Xx) 7
9) [(AA x=x), 1BV x#x)], 6)&Al
10) (Vx)TI(C1B Vv x #x) 8) & 9) & A3
11) (VX)(BA x=Xx) 10)
12) BA(Vx)(x=x) 11)
13) B. 12)

All the inferences with the exception of A1, A2 and A3 are LPQ valid.
Hence one of these has to go. Perhaps the most plausible is A2, in virtue of
its connection with the paradox of implication 4 - (B > A). But this is a
guess. Still, if we could hold our losses to the disjunctive syllogism, absorp-
tion and A2, we might still hope (optimistically) to get by.

IV.7. The above approach to the problem (cutting our losses) is possible
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but obviously requires a great deal more work before we can reasonably
assess its viability.

There is a much more radical approach. However, this is so radical one is
tempted to dismiss it out of hand. Still let us consider it. Let us assume that
modus ponens, reductio ad absurdum, etc. really are only quasi-valid. We
can not give them up without crippling classical reasoning. Why should we
not go on using them anyway?

-IV.8. The proposal is that we allow ourselves quasi-valid inferences even
though they are not generally valid. We do know that quasi-valid inferences
are truth preserving provided that there are no paradoxical sentences
involved (see Section IV.1). Hence, if we were certain that we were not

. dealing with paradoxical sentences, we could use quasi-valid rules with a

clear conscience.

IV.9. Of course, paradoxical sentences do not bear their mark on their
sleeve and there seems no reason to suppose that the class of paradoxical
sentences is decidable (i.e., we have no effective way of telling, in general,
when a sentence is paradoxical). However, paradoxical sentences seem to be
a fairly small proportion of the sentences we reason with. (I would claim
that they occur only in very specific circumstances: when there is some kind
of semantically closed self referentiality, see Section I1.8.) In view of this, it
seems reasonable to formulate the following methodological maxim.

MM Unless we have specific grounds for believing that paradoxical
sentences are occurring in our argument, we can allow our-
selves to use both valid and quasi-valid inferences.

It would seem plausible to claim that in our day-to-day reasoning we (quite
correctly) presuppose that we are not dealing with paradoxical claims.
(This would explain why non-logicians are normally at such a loss when -
presented with logical paradoxes. For it is then clear that a presupposition
of ordinary reasoning is being violated). Hence MM has the effect of
legitimising the status quo. However, where the man in the street refuses to
go on reasoning with paradoxical sentences, we know now that it is
perfectly correct to continue provided we restrict ourselves to valid (not
quasi-valid) inferences. Since these are very weak, this has precisely the
effect of cordoning off the dangerous singularities which are the paradoxes.
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IV.10. Perhaps the immediate reaction is that if we were to allow ourselves
invalid inferences, we would no longer be sure of our conclusions. This is
correct, but is not as impressive as it at first sounds. Even if one is cast-iron
certain that ones rules of inference are valid, one can be no more certain of
ones conclusions than one is of ones premises. In fact the new situation is
little different. If our premises are not paradoxical, quasi-valid rules of

- inference are truth preserving. Hence we can be as sure of the truth of our
conclusions as we are of the truth — only of our premises. This will normally
be only a little less than (if not the same as) the degree to which we are sure
of the truth of our premises.

IV.11. Although this is not a very strong argument against our present
proposal, it does point to an important epistemological consequence of the
proposal. In fact we find ourselves with a new argument for fallibilism in
general, but in mathematics in particular. Suppose that we have an argu-
ment for a certain mathematical statement. Suppose also that the argument
employs some quasi-valid inferences (as most arguments do). Then providing
we have no specific grounds for believing there are any paradoxical sentences
in the proof, we may invoke MM and claim to have proved the statement.
But what would constitute specific grounds for believing we have a para-
doxical sentence in the proof? Obviously if we can show that if a certain
sentence is true, it is false and vice versa (as in the case of the liar) then we
have a paradoxical sentence on our hands. If the sentence contains semantic
terms and is involved with self reference, self applicability, etc., we may not
have found a demonstration of paradoxicality, yet we have excellent
grounds for suspicion. We should tread warily. However, it is always possible
that semantic terms may be smuggled implicitly into a sentence without

our knowledge or that paradoxicality arises for some other reason of which
we are not aware. We may then invoke the maxim but find that at a later
time evidence turns up to the effect that there are paradoxical sentences in
the proof and that they occur in such a way as to invalidate a quasi-valid
rule of inference. We will then have to reject the proof that we previously
accepted. Although this may sound a little unrealistic, there is in fact
nothing essentially new in this situation to those who are familiar with a
little of the history of mathematics.

IV.12. Thus, this approach may not be as implausible as it seemed af first
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sight. In fact, of the alternatives considered, it seems, if anything, the more
plausible. It allows us to have our cake and eat it, as it were. Whereas the
first alternative suffers from the definite suspicion that there may not be
enough cake. ‘

IV.13. Finally in this section I wish to reconsider the matter of incomplete-
ness. In Section I1.6 we saw that provided we use a semantically closed
theory we can avoid there being sentences independent of the theory, whose
truth we can establish. However this leaves open the question of whether
for every axiomatic arithmetic there are independent sentences.

We saw in Section I1.6 that Godel’s theorem can not be applied to
semantically closed theories to show that there are independent sentences,
since Godel’s theorem applies only to consistent theories. There is however
another theorem due to Tarski which, if correct, would show that there
must be such sentences. Tarski’s theorem states that the set of true sentence
sentences of arithmetic is not arithmetic. If this is true then the set of true
arithmetic statements is certainly no axiomatic. However the proof of
Tarski’s theorem breaks down if there are paradoxical sentences. The stan-
dard proof of Tarski’s theorem is as follows:

Suppose the set of true sentences were arithmetic, i.e., there were an
arithmetic sentence of one free variable Tx such that every instance of
Tk < A were true, where k is the code number of 4. Then by the usual
diagonal argument we can find a formula 717} whose code number is .
Substituting this for ‘4’ we get

) Tj < "17j.

This cannot be true. Hence the assumption is incorrect.

This proof ignores the possibility of paradoxical sentences. If Tj is ¢ or f
then (1) is indeed false. But if 7} is paradoxical (which it obviously is, since
it is the arithmetic version of ‘This sentence is false’) then (1) is true! Hence
the proof is invalid.

Thus the standard theorems showing that no axiomatic arithmetic can
be complete fail. There is no reason to believe that the set of true arithmetic
sentences is not axiomatic. I conjecture that it is.
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V. CONCLUDING SELF-REFERENTIAL POSTSCRIPT

V.1. It is always difficult to admit that something you have written is false.
But this is the position I must now admit to being in. For what I have been
saying is not without significance for what I have been saying. In particular,
if what I have been saying is true, then some of the things I have been
saying are false (as well). In particular, I have made certain claims about the
‘truth conditions of sentences and this is precisely the kind of semantic self
reference that leads to paradox.

V.2. To see this, consider the truth conditions of "4 is true |. The Tarski
biconditional gives us that

Aistrueiff 4.

Hence if 4 is true, 4 is true | is true. If 4 is false, 4 is true | is false.

It follows that A4 is true only (true and not false) iff "4 is true ' is true
only. 4 is paradoxical iff 4 is true 'is paradoxical. 4 is false only iff
T4 is true ! is false only. Let us summarize the information as follows.

A I A is true
t !
p p
f f
Symmetrical considerations give us the following table for T4 is false .
A , - A is false
t f
p p
f t

Now consider the metalinguistic statement
1) Some sentences are true and false

(i.e. “3s(s is true and s is false)’ where the quantifier ranges over all true or
false sentences — which of course includes paradoxical ones).

Then using the above tables and the truth conditions for quantifiers
given in Section III.12, (1) can be seen to be true, in fact paradoxical. Thus

its negation
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No sentence is true and false

1s true too. Both my claim that there are paradoxical sentences and
Aristotles’ claim (reported in Section 1.3) that there are none are true!
Perhaps even more surprisingly both of the claims

All sentences are either true or false
Some sentences are neither true nor false

are true! One would expect the former to be true but not the latter since no
provision has been made for truth-valueless sentences. This should serve as

a warning that we cannot read off metalinguistic facts about LP from its
matrices in a cavalier way.

V.3. The point of course, is that once we have given up demanding that
the object theory be consistent, there is no reason to demand that the
metatheory be consistent. Indeed this is forced. on us if we wish to give a
coherent account of paradoxicality. Any object theory inconsistency
A A 714 is transformed simply by the T-scheme into a metatheoretical
contradiction " 4 is true and 4 is not true'. |

Perhaps one of the most interesting inconsistencies in the metalanguage
is provided by the following:

2) This sentence is not true only.

If (2) is true only, then it is certainly true and hence not true only. Thus (2)
is not true only. But if (2) is not true only it is false. Hence it is true only.
Thus (2) is true only. We see that (2) is true only and not true only.

This reasoning is quite sound and underlines the difference between
this approach and the superficially similar approach taken by van Fraassen
(1968) and others of calling paradoxical sentences neither true nor false.
It might be thought that our p could be equated with neither true nor false.
But this would be a mistake. Calling paradoxical sentences neither true nor
false may get one out of the liar paradox. However it does not avoid the
extended liar paradox. (For such is (2).) Since the aim of this sort of
approach is to avoid paradoxes, something new (and usually ad hoc) has to
be done to avoid it. By contrast the aim of this paper has not been to avoid
paradoxes but to show how they can be accepted without coming to grief.
Once we have accepted (as I have argued we must) certain paradoxes as
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facts of life, then the paradoxical properties of (2) appear as just another
fact.

V.6. This final section illustrates the fact that the subject of paradoxical
assertions is one full of surprises. However that it should be so is not
particularly surprising. After all, as we discussed in Section IV.9, we all
normally assume that we are not reasoning about a paradoxical situation:
when we meet a contradiction we take it as a sign that something has gone
wrong and refuse to go further. (And let me add again, before I am accused
of accepting any old contradiction, most contradictions are a sign that
something has gone wrong: that we have an untrue premise.) It is precisely
when we do go further that our familiar world disappears and we find
ourselves in strange new surroundings. The new terrain clearly needs to be
explored. Where it will lead is not yet clear. Yet one consequence for the
history of mathematics already stands out. The discovery by Russell of a
set which was both a member of itself and not a member of itself, is the
greatest mathematical discovery since v/2.

University of Western Australia
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